Lagrangian Interpolation

After reading this chapter, you should be able to:

1. derive Lagrangian method of interpolation,
2. solve problems using Lagrangian method of interpolation, and
3. use Lagrangian interpolants to find derivatives and integrals of discrete functions.

Lagrangian Method

The Lagrangian interpolating polynomial is given by

$$
f_{n}(x)=\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)
$$

where n in $f_{n}(x)$ stands for the $n^{\text {th }}$ order polynomial that approximates the function $y=f(x)$ given at $n+1$ data points as $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots \ldots,\left(x_{n-1}, y_{n-1}\right),\left(x_{n}, y_{n}\right)$, and

$$
L_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

$L_{i}(x)$ is a weighting function that includes a product of $n-1$ terms with terms of $j=i$ omitted. The application of Lagrangian interpolation will be clarified using an example.

Figure 1 Interpolation of discrete data.

Example 1

The upward velocity of a rocket is given as a function of time in Table 1.
Table 1 Velocity as a function of time.

$t(s)$	$v(t)(\mathrm{m} / \mathrm{s})$
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Determine the value of the velocity at $t=16$ seconds using a first order Lagrange polynomial.

Solution

For first order polynomial interpolation (also called linear interpolation), the velocity is given by

$$
\begin{aligned}
v(t) & =\sum_{i=0}^{1} L_{i}(t) v\left(t_{i}\right) \\
& =L_{0}(t) v\left(t_{0}\right)+L_{1}(t) v\left(t_{1}\right)
\end{aligned}
$$

Figure 2 Linear interpolation.
Since we want to find the velocity at $t=16$, and we are using a first order polynomial, we need to choose the two data points that are closest to $t=16$ that also bracket $t=16$ to evaluate i. The two points are $t_{0}=15$ and $t_{1}=20$.

Then

$$
\begin{aligned}
& t_{0}=15, v\left(t_{0}\right)=362.78 \\
& t_{1}=20, v\left(t_{1}\right)=517.35
\end{aligned}
$$

gives

$$
\begin{aligned}
L_{0}(t) & =\prod_{\substack{j=0 \\
j \neq 0}}^{1} \frac{t-t_{j}}{t_{0}-t_{j}}=\frac{t-t_{1}}{t_{0}-t_{1}} \\
L_{1}(t) & =\prod_{\substack{j \\
j \neq 1}}^{1} \frac{t-t_{j}}{t_{1}-t_{j}}=\frac{t-t_{0}}{t_{1}-t_{0}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
v(t) & =\frac{t-t_{1}}{t_{0}-t_{1}} v\left(t_{0}\right)+\frac{t-t_{0}}{t_{1}-t_{0}} v\left(t_{1}\right) \\
& =\frac{t-20}{15-20}(362.78)+\frac{t-15}{20-15}(517.35), \quad 15 \leq t \leq 20 \\
v(16) & =\frac{16-20}{15-20}(362.78)+\frac{16-15}{20-15}(517.35)=0.8(362.78)+0.2(517.35)=393.69 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

You can see that $L_{0}(t)=0.8$ and $L_{1}(t)=0.2$ are like weightages given to the velocities at $t=15$ and $t=20$ to calculate the velocity at $t=16$.

Quadratic Interpolation

Figure 3 Quadratic interpolation.

Example 2

The upward velocity of a rocket is given as a function of time in Table 2.

Table 2 Velocity as a function of time.

$t(s)$	$v(t)(\mathrm{m} / \mathrm{s})$
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

a) Determine the value of the velocity at $t=16$ seconds with second order polynomial interpolation using Lagrangian polynomial interpolation.
b) Find the absolute relative approximate error for the second order polynomial approximation.

Solution

a) For second order polynomial interpolation (also called quadratic interpolation), the velocity is given by

$$
\begin{aligned}
v(t)= & \sum_{i=0}^{2} L_{i}(t) v\left(t_{i}\right) \\
& =L_{0}(t) v\left(t_{0}\right)+L_{1}(t) v\left(t_{1}\right)+L_{2}(t) v\left(t_{2}\right)
\end{aligned}
$$

Since we want to find the velocity at $t=16$, and we are using a second order polynomial, we need to choose the three data points that are closest to $t=16$ that also bracket $t=16$ to evaluate it. The three points are $t_{0}=10, t_{1}=15$, and $t_{2}=20$. Then

$$
\begin{aligned}
& t_{0}=10, v\left(t_{0}\right)=227.04 \\
& t_{1}=15, v\left(t_{1}\right)=362.78 \\
& t_{2}=20, v\left(t_{2}\right)=517.35
\end{aligned}
$$

gives

$$
\begin{aligned}
& L_{0}(t)=\prod_{\substack{j=0 \\
j \neq 0}}^{2} \frac{t-t_{j}}{t_{0}-t_{j}}=\left(\frac{t-t_{1}}{t_{0}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{0}-t_{2}}\right) \\
& L_{1}(t)=\prod_{\substack{j=0 \\
j \neq 1}}^{2} \frac{t-t_{j}}{t_{1}-t_{j}}=\left(\frac{t-t_{0}}{t_{1}-t_{0}}\right)\left(\frac{t-t_{2}}{t_{1}-t_{2}}\right)
\end{aligned}
$$

$$
L_{2}(t)=\prod_{\substack{j=0 \\ j \neq 2}}^{2} \frac{t-t_{j}}{t_{2}-t_{j}}=\left(\frac{t-t_{0}}{t_{2}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{2}-t_{1}}\right)
$$

Hence

$$
\begin{aligned}
v(t)= & \left(\frac{t-t_{1}}{t_{0}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{0}-t_{2}}\right) v\left(t_{0}\right)+\left(\frac{t-t_{0}}{t_{1}-t_{0}}\right)\left(\frac{t-t_{2}}{t_{1}-t_{2}}\right) v\left(t_{1}\right)+\left(\frac{t-t_{0}}{t_{2}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{2}-t_{1}}\right) v\left(t_{2}\right), t_{0} \leq t \leq t_{2} \\
v(16)= & \frac{(16-15)(16-20)}{(10-15)(10-20)}(227.04)+\frac{(16-10)(16-20)}{(15-10)(15-20)}(362.78) \\
& +\frac{(16-10)(16-15)}{(20-10)(20-15)}(517.35) \\
& =(-0.08)(227.04)+(0.96)(362.78)+(0.12)(517.35)=392.19 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) The absolute relative approximate error $\left|\epsilon_{a}\right|$ for the second order polynomial is calculated by considering the result of the first order polynomial (Example 1) as the previous approximation.

$$
\left|\epsilon_{a}\right|=\left|\frac{392.19-393.69}{392.19}\right| \times 100=0.38410 \%
$$

Example 3

The upward velocity of a rocket is given as a function of time in Table 3.
Table 3 Velocity as a function of time

$t(s)$	$v(t)(\mathrm{m} / \mathrm{s})$
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

a) Determine the value of the velocity at $t=16$ seconds using third order Lagrangian polynomial interpolation.
b) Find the absolute relative approximate error for the third order polynomial approximation.
c) Using the third order polynomial interpolant for velocity, find the distance covered by the rocket from $t=11 \mathrm{~s}$ to $t=16 \mathrm{~s}$.
d) Using the third order polynomial interpolant for velocity, find the acceleration of the rocket at $t=16 \mathrm{~s}$.

Solution

a) For third order polynomial interpolation (also called cubic interpolation), the velocity is given by

$$
\begin{aligned}
v(t) & =\sum_{i=0}^{3} L_{i}(t) v\left(t_{i}\right) \\
& =L_{0}(t) v\left(t_{0}\right)+L_{1}(t) v\left(t_{1}\right)+L_{2}(t) v\left(t_{2}\right)+L_{3}(t) v\left(t_{3}\right)
\end{aligned}
$$

Figure 4 Cubic interpolation.

Since we want to find the velocity at $t=16$, and we are using a third order polynomial, we need to choose the four data points closest to $t=16$ that also bracket $t=16$ to evaluate it. The four points are $t_{0}=10, t_{1}=15, t_{2}=20$ and $t_{3}=22.5$.
Then

$$
\begin{aligned}
& t_{0}=10, v\left(t_{0}\right)=227.04 \\
& t_{1}=15, v\left(t_{1}\right)=362.78 \\
& t_{2}=20, v\left(t_{2}\right)=517.35 \\
& t_{3}=22.5, v\left(t_{3}\right)=602.97
\end{aligned}
$$

gives

$$
\begin{aligned}
& L_{0}(t)=\prod_{\substack{j=0 \\
j \neq 0}}^{3} \frac{t-t_{j}}{t_{0}-t_{j}}=\left(\frac{t-t_{1}}{t_{0}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{0}-t_{2}}\right)\left(\frac{t-t_{3}}{t_{0}-t_{3}}\right) \\
& L_{1}(t)=\prod_{\substack{j=0 \\
j \neq 1}}^{3} \frac{t-t_{j}}{t_{1}-t_{j}}=\left(\frac{t-t_{0}}{t_{1}-t_{0}}\right)\left(\frac{t-t_{2}}{t_{1}-t_{2}}\right)\left(\frac{t-t_{3}}{t_{1}-t_{3}}\right) \\
& L_{2}(t)=\prod_{\substack{j=0 \\
j \neq 2}}^{3} \frac{t-t_{j}}{t_{2}-t_{j}}=\left(\frac{t-t_{0}}{t_{2}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{2}-t_{1}}\right)\left(\frac{t-t_{3}}{t_{2}-t_{3}}\right) \\
& L_{3}(t)=\prod_{\substack{j=0 \\
j \neq 3}}^{3} \frac{t-t_{j}}{t_{3}-t_{j}}=\left(\frac{t-t_{0}}{t_{3}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{3}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{3}-t_{2}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
v(t)= & \left(\frac{t-t_{1}}{t_{0}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{0}-t_{2}}\right)\left(\frac{t-t_{3}}{t_{0}-t_{3}}\right) v\left(t_{0}\right)+\left(\frac{t-t_{0}}{t_{1}-t_{0}}\right)\left(\frac{t-t_{2}}{t_{1}-t_{2}}\right)\left(\frac{t-t_{3}}{t_{1}-t_{3}}\right) v\left(t_{1}\right) \\
+ & \left(\frac{t-t_{0}}{t_{2}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{2}-t_{1}}\right)\left(\frac{t-t_{3}}{t_{2}-t_{3}}\right) v\left(t_{2}\right)+\left(\frac{t-t_{0}}{t_{3}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{3}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{3}-t_{2}}\right) v\left(t_{3}\right), t_{0} \leq t \leq t_{3} \\
v(16)= & \frac{(16-15)(16-20)(16-22.5)}{(10-15)(10-20)(10-22.5)}(227.04)+\frac{(16-10)(16-20)(16-22.5)}{(15-10)(15-20)(15-22.5)}(362.78) \\
& \quad+\frac{(16-10)(16-15)(16-22.5)}{(20-10)(20-15)(20-22.5)}(517.35) \\
& \quad+\frac{(16-10)(16-15)(16-20)}{(22.5-10)(22.5-15)(22.5-20)}(602.97) \\
= & (-0.0416)(227.04)+(0.832)(362.78)+(0.312)(517.35)+(-0.1024)(602.97) \\
= & 392.06 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) The absolute percentage relative approximate error, $\left|\epsilon_{a}\right|$ for the value obtained for $v(16)$ can be obtained by comparing the result with that obtained using the second order polynomial (Example 2)

$$
\left|\epsilon_{a}\right|=\left|\frac{392.06-392.19}{392.06}\right| \times 100=0.033269 \%
$$

c) The distance covered by the rocket between $t=11 \mathrm{~s}$ to $t=16 \mathrm{~s}$ can be calculated from the interpolating polynomial as

$$
\left.\begin{array}{rl}
v(t)= & \frac{(t-15)(t-20)(t-22.5)}{(10-15)(10-20)(10-22.5)}(227.04)+\frac{(t-10)(t-20)(t-22.5)}{(15-10)(15-20)(15-22.5)}(362.78) \\
& +\frac{(t-10)(t-15)(t-22.5)}{(20-10)(20-15)(20-22.5)}(517.35) \\
& +\frac{(t-10)(t-15)(t-20)}{(22.5-10)(22.5-15)(22.5-20)}(602.97), 10 \leq t \leq 22.5
\end{array}\right] \begin{aligned}
&= \frac{\left(t^{2}-35 t+300\right)(t-22.5)}{(-5)(-10)(-12.5)}(227.04)+\frac{\left(t^{2}-30 t+200\right)(t-22.5)}{(5)(-5)(-7.5)}(362.78) \\
&+\frac{\left(t^{2}-25 t+150\right)(t-22.5)}{(10)(5)(-2.5)}(517.35)+\frac{\left(t^{2}-25 t+150\right)(t-20)}{(12.5)(7.5)(2.5)}(602.97) \\
&=\left(t^{3}-57.5 t^{2}+1087.5 t-6750\right)(-0.36326)+\left(t^{3}-52.5 t^{2}+875 t-4500\right)(1.9348) \\
& \quad+\left(t^{3}-47.5 t^{2}+712.5 t-3375\right)(-4.1388)+\left(t^{3}-45 t^{2}+650 t-3000\right)(2.5727) \\
&=-4.245+21.265 t+0.13195 t^{2}+0.00544 t^{3}, 10 \leq t \leq 22.5
\end{aligned}
$$

Note that the polynomial is valid between $t=10$ and $t=22.5$ and hence includes the limits of $t=11$ and $t=16$.
So

$$
\begin{aligned}
s(16)-s(11) & =\int_{11}^{16} v(t) d t=\int_{11}^{16}\left(-4.245+21.265 t+0.13195 t^{2}+0.00544 t^{3}\right) d t \\
& =\left[-4.245 t+21.265 \frac{t^{2}}{2}+0.13195 \frac{t^{3}}{3}+0.00544 \frac{t^{4}}{4}\right]_{11}^{16}=1605 \mathrm{~m}
\end{aligned}
$$

d) The acceleration at $t=16$ is given by

$$
a(16)=\left.\frac{d}{d t} v(t)\right|_{t=16}
$$

Given that

$$
\begin{aligned}
v(t) & =-4.245+21.265 t+0.13195 t^{2}+0.00544 t^{3}, \quad 10 \leq t \leq 22.5 \\
a(t) & =\frac{d}{d t} v(t)=\frac{d}{d t}\left(-4.245+21.265 t+0.13195 t^{2}+0.00544 t^{3}\right) \\
& =21.265+0.26390 t+0.01632 t^{2}, \quad 10 \leq t \leq 22.5
\end{aligned}
$$

$$
a(16)=21.265+0.26390(16)+0.01632(16)^{2}=29.665 \mathrm{~m} / \mathrm{s}^{2}
$$

